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Abstract~In this paper we demonstrate, through a very simple three dimensional truss, a degener
ated case of bifurcation-infinite bifurcated paths. In addition we show its implication on numerical
simulation by the finite element method. The effect of imperfection on the truss is also discussed,
where isolated solutions are found. Copyright © 1996 Elsevier Science Ltd.

1. INTRODUCTION

Recently much attention has been focused on the study of nonlinear dynamic systems,
which show unusual richness in their behaviour, although the systems themselves may be
extremely simple (Seydel, 1988, Nashie, 1990, Troger and Steindl, 1991, Shi, 1991), In this
paper, we will study a simple nonlinear 3D truss which shows some interesting features that
do not exist in linear range. These features may be used as benchmarks to test the solution
procedures of a finite element code (Pecknold et al., 1985, Duxbury et aI" 1989). Here we
restrict ourselves to the phenomenon of infinite bifurcation and isolated solution paths.
The main objective is to construct a simple structure model as concept demonstrator and
test case for numerical algorithms. During the course of finishing this paper, it has come to
the author's notice some similar examples on infinite bifurcation (Ikeda et aI., 1988 and
Choong, 1994). However these examples are different from the present one in that they
require an infinite number of bars (Ikeda et al., 1988) or springs (Choong, 1994). Further
imperfection and issues related to numerical simulation have not been addressed. Haughton
(1979) and Shilkrut (1991) have both demonstrated isolated solution paths through their
elaborate models, but neither of them has discussed aspects of numerical simulation. It will
be shown later that a standard finite element solution procedure will not be able to find the
isolated solution, which could be extremely dangerous, because potential stability loss due
to dynamic buckling may have been ignored.

We consider the following 3D truss made of n identical bars with one end joined
together and the other ends evenly distributed on a unit circle in x-y plane (see Fig. 1), For
such a simple structure with only three degrees of freedom, we will prove first that it has
an infinite number of secondary equilibrium paths, i.e. a degenerated case of bifurcation.
Next the effect of this degenerated bifurcation on numerical simulation will be investigated.
In the end we will show how the truss behaves when imperfection is present.

2. THE PERFECT TRUSS

Since the truss is "quasi-axisymmetric", we will work in a cylindrical co-ordinate
system with the displacement field expressed as :

u = rcos e
v = rsin e
W=W (1)

t Present address: Mechanical Engineering Centre, European Gas Turbine. GEC-Alsthom, Leicester
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Fig. I. A simple three dimensional truss.

where u, v and ware the three displacements at the top of the truss, while rand f} are the
radius from and rotation around the z axis.

For easy formulation, we will employ the Green strain. The Green's strain for each
bar can be easily worked out as:

e;, = 0.5[(r cos f} -cos f};)2 + (r sin f) - sin f};)2 + (h +W)2 - (I +h2 )]j{l +h2)

= 0.5(e;; - mm (2)

where h is the original height of the truss, 10 the original length, f}; = i2n/n and

e;; = (r2 -2rcosf)cosf},-2rsinf} sin ti i + 1)+ (h+ W)2. (3)

In order to find the equilibrium equation, we need the Total Potential Energy IT of the
truss:

(4)

Here, L means summation of i from I to n; E is the Young's Modulus, A the cross section
area and A. represents the vertical loading at the top of the truss.

By differentiating the potential energy given in eqn (4) with respect to the three degrees
of freedom, r, f) and w, we can establish the equilibrium equations:

(a) oIT/or = LEAloe;; oe;;/or

= L(e;; -/m2r - 2 cos f} cos ti; - 2 sin ti sin f};]
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= 2rL(e; - m-2 cos O(Leicos OJ -1~L cos 0;) - 2 sin O(Leisin OJ - nL sin OJ)

= 2rn[r2+ 1+ (h + W)2 -l~] +4r cos2 OL cos2 OJ + 4r sin2 OL sin2 OJ

+ 2r sin 20L sin 20 j

= 2rn[r2+ 1+(h+W)2 -l~] +4r(sin2 O+cos2 O)Lsin2 OJ

= 2rn[r2+ 1+ (h+ W)2 -l~] + 2rL(1-cos 20,)

= 2rn[r2+2+(h+w)2_l~].
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(5)

Notice in the above we have used relations: 0.25EAIn = 1; L cos 0i = 0; L sin 0i = 0;
L sin 20 j = 0; L cos 20 j = 0; L cos2 OJ = L sin2 OJ. For proof see Appendix A.

(b) oll/oO = LEAloei oeJoO

= L(e; -l~)(2r sin 0cos 0i - 2r cos 0 sin OJ)

= 2r[sin O(Leicos OJ -1~L cos 0i) - cos O(Leisin OJ -1~L sin 0;)]

= 2r[2r sin 0 cos OL( -cos2 0i + sin2 OJ) - 2r sin2 OL sin 0i cos OJ

+ 2r cos2 OL sin OJ cos OJ

= - 2r2[sin 20L cos 20 j - (sin2 0 - cos2 O)L sin 20J

=0. (6)

This identity has great bearings on the structure response, which will be further discussed
later.

(c) oll/ow = LEAloeioeJow-2

= L(e;-ln2(h+w)-2

= 2n(h+ w)[r2+ 1+ (h+W)2 -l~] -2. (7)

From eqns (5)-(7) we can tell that there is a primary solution:

2 = 2n(h+w)[1+(h+wf-m = 2n(w2+2wh)(h+w)

r = O.

On the other hand there is also another secondary solution or bifurcated solution:

2 = -2n(h+w)

r2+2+(h+w)2-1~= 0

which can be written as:

2 = -2n(h+w)

r2+(h+w)2 =h2-1.

(8)

(9)

(10)

Equation (10) will give us the critical load/displacement at the bifurcation point (r = 0) :

2= -2n(h+wc )

We = -h±(h2 _1)1/2. (11 )
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One important thing about the equilibrium equations is that they are independent of eand
the secondary paths form a spherical surface with a radius of (h 2 _1)1/2 and centred at the
origin. To put it in another way, we have an infinite number of secondary paths!!! This may
seem to be a little dubious at first sight. But after a careful second thought, it may not look
so unusual. Because the truss is in fact a close analogy to an Euler strut with a polygon
cross section, which gives equal second moment of inertia, hence the same bending stiffness
and buckling load in any transverse directions (only initial buckling is considered). Appar
ently such a strut can have an infinite number of bifurcated paths due to its axial symmetry.

3. THE STIFFNESS MATRIX AND THE FINITE ELEMENT SIMULATION

In this section, we will show the inherent difficulty in finite element analysis of the truss
due to the infinite bifurcation. To this end, we need to derive the tangent stiffness matrix in
analytical form, by which we can show that the tangent stiffness matrix is always singular.

By differentiating eqns (5), (6) and (7) with respect to r, eand w, we can get the tangent
stiffness matrix:

[

2n[r2+2+(h+w)2 -l~]+4r2n 0

Ke = 0 0

4rn(h+w) 0

4rn(h+w) 1
o .

2n[r2+ 1+3(h+w)2 -l~])

(12)

which, for the primary path (r = 0), can be simplified as:

[
2n[2+(h+W)2-1~] 0

Ke = 0 0

o 0

o ]o .
2n[1 +3(h +W)2 -l~]

(13)

For the secondary path, r2+2+ (h +W)2 -l~ = 0, the tangent stiffness matrix becomes:

o 4rn(h+w) ]
o 0 .

o 2n[2(h+w)2_1]

(14)

Now we want to find the stiffness matrix in Cartesian co-ordinates system, because it
is employed in finite element formulation. To achieve this, we need the transformation
matrix T between the two co-ordinate systems.

From definition we know that:

r=(x2+y2)l i2

tane = x/y

which will lead to the relation:

Z=Z (15)

br = (xbx+ybY)/(X2 +y2)1/2 = bxcose+bysine

be = (1+tg2e)-I(ybx-xby)y-2 =(ybx-xbY)/(X2+y2) =(bxsine-bycose)/r

bz = bz. (16)

As a result the virtual displacement in the cartesian coordinates system bPx , and its counter
part in the cylindrical system bPe are related as:
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(
Jr) ( cos 0 sin 0 0) (JX)

JPe = JO -sinO/r cosO/r 0 Jy = TJPx '

Jz 0 0 1 Jz

We can also find the relation between the forces in the two systems:

JFe= (~e) (' _c::i: O r~:s80 ~) (;:) = TFx

Fz 0 0 I Fz

Substitute eqns (17) and (18) into the following equation:

KoJPe = JFe

we can get:

KoTJPx = T'JFx

or,

so,

Applying the above relations to Kx on the secondary path, we have:

[

4r2ncos2 0 4r2ncosOsin8 4rn(h+W)COS8]

Kx = 4r2 ncos 0 sin 0 4r2nsin20 4rn(h+w) sinO

4rn(h+w)cosO 4rn(h+w)sin8 2n[2(h+w)2-1]

2165

(17)

(18)

(19)

(20)

(21 )

(22)

(23)

One obvious thing about the above matrix is that the first and second rows are linearly
dependent on each other. So it is singular, which should not be a surprise at all, as it is
singular in the cylindrical system. However in numerical analysis, because of finite machine
precision, the round-off errors will result in a nearly singular matrix. Numerical experiment
shows that ill conditioning can be handled in some cases, while in others it causes oscil
lations. To illustrate this, we run a finite element analysis of a four bar truss (h = 2). After
bracketing the bifurcation point, we do a branch switching by simple eignmode injection
(Wagner, 1988). The secondary paths formed by the u and v displacements in x and y
directions, as shown in Fig. 2. By using different perturbation patterns, we get either straight
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Fig. 2. Bifurcation diagram of a four bar truss: horizontal displacement u against v.
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or zigzagged bifurcated paths. This confinns firstly that there are an infinite number of
paths; secondly that certain paths are more numerically stable (straight lines) than the
other (zigzagged lines). It can also be proved numerically that all the secondary paths are
of the same shape (results are not shown here).

4. UNSYMMETRIC LOADING

Now we consider the case that the truss is subject to loading:

Fx = /(}. cos eo
Fy = /(.?csin eo
Fz = A

where K denotes constant load imperfection.
Under such a loading the total potential energy is:

II = l:1/2EAloel-KAcoseorcose-dsineorsine-Aw

= l:1/2EAloel- drcos(e- eo) - AW.

We can proceed in the same way to get the equilibrium equations:

(a) all/or = l:EAloei oe;/or

= 2rn[r2+2+ (h + W)2 -l~] - dcos(e- eo)

(b) oll/oe = drsin(8-eo)

(c) all/ow = 2n(h+ w)[r2+ 1+ (h + W)2 -l~] - A = O.

To satisfy eqn (27), one needs to have:

r=O, or sin(e-eo) =0.

Below we will consider each case separately.

(24)

(25)

(26)

(27)

(28)

(29)

(a) r = O. We have, from eqn (26), 8-80 = ±n/2 and from eqn (28),
Ie = 2n(w2+2wh)(h+w). However when r = 0,8-80 = ±n/2 is meaningless. So
this is not a solution. Physically it is impossible to have a defonnation path with
r = 0 and a non-zero side force K.

(b) sinCe - 80) = 0 or 8 - 80 = 0; n. In this case we have, from eqn (26),

(30)

Working with eqn (28) we can derive:

(31 )

From eqn (30) and eqn (31), we can easily solve for Ie and win tenns of r (see Appendix
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C). Apparently, the structure response (see Fig. 3, [0r n = 4, h = 2, K = 0.1) is an unfolding
of the circle (see eqn 11) related to the perfect truss. Instead of infinite paths, there is only
one single curve in the plane defined by () - ()o = 0; n. However, as expected, the response
is independent of the direction, ()o, of the load imperfection, which has been confirmed by
numerical experiments.

5. GEOMETRIC IMPERFECTION

We consider the same 3D truss with geometric imperfection i.e. the apex of the truss
has now been displaced from the original symmetrical position (0,0, h) to (ro cos ()o, ro sin ()o,
h).

We will still work in a cylindrical coordinate system with the displacement field:

u = rcos ()

v = r sin ()

W= w. (32)

The variables in eqn (32) are the same as before, but they are measured from (ro cos ()o,
ro sin ()o, h), see Fig. 4.

Because of the imperfection, the bar lengths and strains are different:

old length l;j = (cos ()j - ro cos ()0)2 + (sin ()j - rosin ( 0)2 +h2

= 1+h2 +r6 -2ro cos(()j-()o)

~ l+h 2 -2rocos(()j-()0), (33)

In the last step we have ignored the second order term r6. In the sequel r6 and higher
terms will be omitted;

Newlengthl;j = (rcos ()+rocos()o -COS()J2 + (rsin()+ro sin()o -sin()J2 + (W+h)2

~ (w +h)2 + 1+ r2
- 2r cos(()j - ()) +2rro cos(()o - ()) - 2rocos(()j - ()o). (34)

Again r6 have been omitted;

~ 0.5[(w2+2wh + r2) - 2r cos(()j - ()) + 2rro cos(() - ()o)]/l;,

= 0.5[(1) - 2r(2) +2rro<4 )]fl;j

where (1) = (w 2 +2wh+r2
)

0) = cos(()j-())

0) = cos(()j-()0)/(h2+ 1)

(4) = cos(()-()o).

For later use we now derive an approximation of 1/t;;j :

If we ignore the second order term, we have:

(35)

(36)

(37)
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vertical displacement.
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Fig. 4. A simple three dimensional truss with initial geometric imperfection.

I/l~i = [I +h2-2ro COS(O,-OO)]-3!2

= (l +h2)-3!2[1-2ro COS(O;-Oo)/(l +h2)]-3/2 (38)

which can be further approximated as :

(39)

The Total Potential Energy rr of the truss is:

rr = Ll/2EAloief -AW (40)

from which we can get the equilibrium equations:

(a) orr/or = LO.25EAlr;/ eli oelder

= LO.25EA(h2+ I) ~ 15 [I + 3ro cos(O; - Oo)/(h2+ 1)][(1) -2r(2) +2rro<4)]

x [2r-2(2)+2ro(4)]

= L[l +3ro (3)][( 1) - 2r(2) +2rro(4)][2r-2<2) +2ro<4)]

= L[I +3ro(3)][( I) - 2r(2) +2rro(4)][2r- 2<2) +2ro(4)] (41)

in the above we have used eqn (37) and assumed 0.25EA/(h2+ 1)3/2 = 1.
Expanding eqn (40), we get:
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oll/or = I:[< 1)2r+ 3ro(3)(1 )2r- 2r(2)2r- 3ro(3)2r<2)2r

+ 2rro<4 )2r+ 3ro(3 )2rro(4)2r- (1 )2<2) - 3ro (3)(1 )2(2)

+ 2r(2)2<2) + 3ro(3 )2r(2)2(2) - 2rro<4)2(2) - 3ro(3 )2rro<4)2<2)

+ (1 ) 2ro<4) +3ro(3)( 1)2ro<4) - 2r(2)2ro<4) - 3ro(3)2r<2)2ro<4)

+2rro ( 4)2ro<4) +3ro(3)2rro(4)2ro<4)]. (42)

Neglecting second order and higher terms of ro in the above equation, we arrive at

oll/or = I:[O )2r+ 3ro(3)<1 )2r- 2r(2)2r- 3ro(3)2r<2)2r

+ 2rro(4)2r- <1)2(2) - 3ro(3)< 1)2(2)

+ 2r(2)2(2) +3ro(3)2r(2)2<2) - 2rro<4)2(2)

+0)2ro<4)-2r<2)2ro(4)]. (43)

Based the fact that I:(2) = I:(3)=O (see Appendix A) and I:(1)<2) = I:(1)(3) =
I:(2)(4) = 0 (since I:0)<2) = (1)I:<2), I:(2)<4) = (4)I:<2) and I:0)(3) = 0)I:<3»,
we have,

oll/or = I:{ 0 )2r- [12r2ro+6roO )](2)(3) +4r(2)(2) + 12rro(2)(2)(3)

+ (4r2ro +<1 )2ro)<4)}

= 2nr(1) - [12r2ro/(h 2+ 1) +6roO )/(h2+ 1)]n/2 cos(O-Oo) +4rn/2

+n(4r2ro + 0 ) 2ro) cos(O-Oo)

= n(h2+ 1)-1 {2r(w2+ 2wh+ 1+ r2)(h2+ 1) -ro[6r2+ 3(w2+ 2wh+ r2)

- (h 2+ 1)(6r2+2w2+4wh)] cos(O-Oo)}' (44)

Notice in the above we have used relations: I:(2)<2) = n/2; I:(2)(3) =
n/2cos(0-00); I:(2)(3)(3) = O. For proof see Appendix B.

(b) oll/oO = I:O.25EAlr;/e/ioe/i/ao

= I:O.25EA(h 2+ 1)- 15[1 + 3ro cos(Oj- 00)/(h2+ 1)][0) - 2r(2) + 2rro<4)]

x [-2rsin(0;-0) -2rro sin(O-Oo)]

= I:[1 + 3ro(3)][<1) -2r(2) +2rro<4)][ -2r<5) - 2rro(6)]

= I:[ - 0 )2r<5) +2r(2)2r<5) -2rro(4)2r<5) - 3ro(3)<1 )2r<5)

+ 3ro(3)2r(2)2r<5) - 3ro(3)2rro<4)2r<5) - (1 )2rro<6)

- 3ro(3)0 )2rro<6) +2r(2)2rro (6) +3ro(3)2r(2)2rro<6)

- 2rro<4)2rro(6) - 3ro(3 )2rro(4 )2rro<6)] (45)

where (5) = sin(O;- 0), (6) = sin(O - 00),

Again we neglect r~ and higher order terms:

(m/oo = I:[-0)2r<5)+2r<2)2r<5)-2rro<4)2r<5)

- 3ro (3)< 1)2r<5) + 3ro(3 )2r(2)2r<5) - <1)2rro <6) + 2r(2)2rro(6)]

= -rr06/(h2+ 1)(w2+2wh+r2)[ -n/2sin(0-00)]

- 2nrro(w2+ 2wh+r2) sin(O- 00)
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= rron sin(8- 80 )(h2 + 1) -1 {3(w2 + 2wh+r2
) - 2(h2 + 1)(w2 + 2wh +r2

)}

= rron sin(8-80H- 2+ 3/(h2 + l)](w2 + 2wh + r2
). (46)

In the above derivation, we have employed additional relations: L(5) = 0,
L(2)<S) = 0, L<4)<5) = <4)L<S) = 0, L(2)<6) = <6)L<2) = 0, LO)<5) = -n/
[2(h 2 + 1)] sin(8-80); L(2)0)<5) = 0, for proof see Appendices A and B.

(c) all/ow = LO.25EAl o/e ri oeli/ow-A

= LO.25EA(h2 + 1) -1.5 [1 + 3roO)][<I) - 2r(2) + 2rro<4 )](2w+ 2h) - A

= 2(h+ W)L[<I) - 2r(2) + 2rro(4) + 3roO)<I) - 3roO)2r<2)

+ 3roO)2rro<4)] - A

= 2n(h+w){(w2 +2wh+r2 )+rro[-3/(h2 + 1)+2] cos(8-80 )} -}, (47)

The d terms have been neglected. Remember that L(2) = LO) = L<I)O) = 0,
L(3)<4) = (4)LO) = 0 and L(2)O) = n/[2(h 2 + 1)] cos(8-80).

Obviously eqn (46) has two solutions:

solution 1 : 8-80 = O;n

which, combined with eqn (41) and (43), will lead to:

2r(w2 + 2wh+ 1+ r2 )(h2 + 1) - ±ro[6r2 + 3(w2 + 2wh+ r2
) - (h 2 + 1)(6r2 + 2w2 +4wh)] = 0

(48)

solution 2 :

(49)

(50)

From eqn (45) and (47), this will result in:

2n(h+w)rro[ -3/(h2 + 1) +2] cos(8-80)-A = O.

(51 )

(52)

As a quick check, we make ro = 0, i.e. we have a perfect truss, it can be easily proved that
the above two solutions coincide with the perfect solution (eqn 11). It is interesting to note
that both solutions indicate a deformation pattern i.e r-w diagram, that does not depend
on n-the number of trusses, because eqn (48) and eqn (50) do not contain n.

From eqn (48) and eqn (49), it is possible to solve Aand w in terms of r (see Appendix
D), which has been visualised in Fig. 5 (n = 4, h = 2, ro = 0.1). Different from the load
imperfection case (Fig. 3), we now seem to have an isolated solution, manifested by the
loop on the left in Fig. 5a. A numerical simulation has also confirmed this, although the
finite element analysis is quite tricky, where a restart with eigenmode injection (Wagner
and Wriggers, 1988) is initiated at point A in Fig. 5a to jump to the isolated loop and many
restarts are necessary to follow the whole path. So this is an interesting case where an
isolated solution path exists. A further test on seven bar truss confirmed the fact that the
deformation pattern is independent of the number of bars (Fig. 6a), though the load level
is quite different (Fig. 6b and 6c)

Another difference from the load imperfection case is that we have two solutions
instead ofone. While the first solution lies in the plane decided by the 80, the second solution
is three dimensional.
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Fig. 5. The nonlinear response of a four bar truss with initial geometric imperfection: '0' analytical;
'--' finite element. (a) Vertical displacement w against radial dispalcementr; (b) load against

radial displacement; (c) load against vertical displacement.
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Fig. 6. The nonlinear response ofa seven bar truss with initial geometric imperfection: '0' analytical;
'--' finite element. (a) Vertical displacement w against radial displacement r; (b) load against

radial displacement; (c) load against vertical displacement.
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Great effort has been made to find the second solution given by eqns (50-52). The
nonlinear finite element code employed failed to predict such a solution. In fact the existence
of the second solution implies that the initial undeformed state is a bifurcation point, which
is proved wrong by the positive definite stiffness matrix. This suggests that solution two
might be created by the approximations employed in the analytical analysis.

6. SUMMARY AND FUTURE WORK

Close solutions for the nonlinear response of a simple truss have been obtained
both with and without imperfection to illustrate some unique aspects of nonlinear system
behaviour and to provide benchmark for nonlinear finite element solution algorithms. For
the perfect truss, conditions of infinite bifurcation have been derived together with post
bifurcation solution. We have shown that finite element modelling of such a truss will
always have a singular tangent stiffness matrix in the secondary path, which is a direct
consequence of infinite bifurcation. This makes post-critical analysis numerically unstable.
As for a perfect truss, we have found that unfolding leads to unconnected solutions, which
demand special treatment in finite element simulation. In this paper, eigenmode injection
is used.

We have so far restricted ourselves to static, elastic behaviour of the truss. A natural
extension could be the dynamic and/or plastic response. Further we may replace bar by
beam, which may introduce more intrinsic interaction into the system.
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APPENDIX A

(a) Prove that L cos OJ = 0; L sin OJ = 0; L cos 20J = 0; L sin 20i = O.
Smce

eiO
, = cos OJ + i sin OJ

so

which gives:

so

(AI)

(A2)

(A3)
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I: cos OJ = I: sin OJ = 0

where

eo = 2n/n.

Similarly we can prove that I: cos 20j = 0; I: sin 2ej = O.

(b) Prove that I: cos2 ej = I: sin2 ej

APPENDIX B

(a) I: cos(kej + e) = 0; I: sin(kOj +e) = 0

where k is any integer, ej = j2n/n = jOo, where j = 0, n - I and eis any constant angle.
Since

ei(k6j+8) = cos(kOj + 0) + i sin(kej + e)

so

s = I: ei(k6j+6) = e'6I: e'(kj/lO) = I: cos(kej + e) + iI: sin(kOj + e)

which gives:

so
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(M)

(A5)

(Bl)

(B2)

(B3)

(b)

(c)

I:<2><2> = I:cos(ei-e)COS(ei-e) = I:[cos2(ei-e)-1/2) = n/2;

I:<2>O> = I: cos(e,-e) cos(e,-eo)/W + I)

= 0.5/W + 1)I:[cos(2ei-e-eo) +cos(O-Oo»)

= 0.5n/W + I) cos(e- eo) ;

(B4)

(B5)

(B6)

(d) I:<2><2>O> = I: COS(Oi-e)COS(Oi-O) cos(ei-OO)/W + I)

= I/W + 1)I:[cos2(ei-e) -1/2] cos(O, -(0 )

= 0.25/W + 1)I:[cos(3ej-2e-Oo) +cos(O,-2e+eo»)-0.5I: cos(O,-eo) = O. (B7)

(e) I:O><5> = I: cos(e i - eo)/(h2 + I) sin(ei - e)

= 0.5/W + 1)I:[sin(2ei -e-eo) -sinCe-eo)]

= -0.5n/(h2 + I) sinCe-eo) (B8)

(f) I:<2><3><5> = I:cos(ei-e) cos(ei-eO)/W + I) sin(ei-e)

= 0.5/W + 1)I:cos(O,-Oo) sin2(e,-e)

= 0.25/W + 1)I:[sin(3ej-20-0o)+sin(e, -e+oo)] = O. (B9)

APPENDIX C

Visualising eqn (31) and eqn (30)

eqn (30) divided eqn (31) gives:

(CI)

which can be rearranged in terms of (h + w) as:

(C2)

For a given r, we can find w from eqn (C2). Substituting rand w back into eqn (31), we can find ).. So we can
define a range of r, say [0,4) for h = 2, then increase it from 0 to 4 by certain number of increments, at which we
also evaluate A. and w. Note that in the cylindrical co-ordinate system, r is always positive. However the ± sign
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in eqn (e2) corresponds to () - ()o = 0; n, which are on the same line but in opposite direction. So in the physical
space, + relates to positive r, while - relates to negative r, in the () - ()o = 0; n plane.

APPENDIX D

Visualising the first solution of geometrically imperfect truss- eqn (48) and eqn (49) :

from eqn (48), we have:

2r[(w+h)' -h' + 1+r'](h' + 1) - ±ro{6r' + 3(w+h)' -3h' + 3r' - (h' + 1)[6r' + 2(w+h)' - 2h']} = 0

(01)

which can be rearranged as:

{2r(h' + 1) - ± ro[3 - 2(h' + I)]} (w+ h)' = - 2r( - h' + 1+ r')(h' + 1)± ro[9r' - 3h' - 2(h' + 1)(3r' -h')]

(02)

or

[2(r±ro)(h' + 1) - ± 3roHw+ h)' = ± 3ro(3r' -h')+ 2(h' + 1)[ - 2r( -h' + I + r')±ro(3r' - h')]. (D3)

So for a given r, we can find w from the above equation. Substitute rand w into eqn (49), we can find A. The
plotting procedure can be the same as in Appendix C.

APPENDIX E

Visualising the second solution of the geometrically imperfect truss: eqn (50), eqn (51) and eqn (52) :

start with r, we find w from eqn (50) and cos(()-()o) from eqn (51), knowing all these, we may obtain). from
eqn (52).


